A client in the cross-hairs
how one software company deals with the challenge of protecting its users on the web

Rob Franco
Lead Program Manager, Windows CardSpace
Contact: rfranco at microsoft dot com
Today’s discussion

- Seeking the “Big Picture” for trust on the web
- Building trust today with IE7 and CardSpace
- A sample of Microsoft research on emerging threats
Phishing grows as counter measures take hold

- Financial Institutions growing in efficiency taking down phish sites and thwarting attacks before and after launch time
- Far more server power to drive attacks and collect consumer data

![Graph showing new phishing sites by month from Dec '05 to Dec '06](source: http://www.antiphishing.org)

- 38 million pieces of “potentially unwanted” software were detected by Windows Defender between July 1, 2006, and December 31, 2006.

Source: Microsoft Security Intelligence Report

© 2007 Microsoft Corporation
Microsoft Security Development Lifecycle
IE running as Admin on XP

IExplore.exe

- Install an ActiveX control
- Change Settings, Download a Picture
- Cache Web content

Exploit can install MALWARE

Admin-Rights Access
- HKLM Program Files

User-Rights Access
- HKCU My Documents Startup Folder
- Temp Internet Files
- Untrusted files & settings

© 2007 Microsoft Corporation
IE running in Protected Mode on Vista

Protected Mode IE

Compat Redirector

Integrity Control

Broker Process

Admin-Rights Access

HKLM
HKCR
Program Files

User-Rights Access

HKCU
My Documents
Startup Folder

Temp Internet Files

Untrusted files & settings

Install an ActiveX control

Change settings, Save a picture

Cache Web content

Redirected settings & files

© 2007 Microsoft Corporation
Phishing Filter
Client-side Heuristics, Allow-list and Web service

URL Reputation Service
https://urs.microsoft.com

Known Good URLs
IEAPFLTR.DAT
Phishing Filter
Populating the URL Reputation Service

End User Report

Site owner Report

Grader Confirmed Sites

URL Reputation Service

https://urs.microsoft.com

Third Party Phishing databases

Cyota
Mark Monitor
Internet Identity

© 2007 Microsoft Corporation
Picture in Picture Spoof
The Laws of Identity

Established Through Industry Dialog

1. User control and consent
2. Minimal disclosure for a defined use
3. Justifiable parties
4. Directional identity
5. Pluralism of operators and technologies
6. Human integration
7. Consistent experience across contexts

Join the discussion at www.identityblog.com
CardSpace Summary

- Reduces dependency on passwords
- Puts users in control
- Gets asymmetric keys in play without consumers realizing it
- Agnostic under the covers
 - Open standards (WS-*)
- Special ceremony, visual secrets
 - Separate Desktop
- Remembers relationships
Microsoft Research on emerging threats
MashupOS: Operating System Abstractions for Browsers
Web Browser Evolution

- Web browser history:
 - **1991**: World-Wide Web, first text-based browser using hypertext by Tim Berners-Lee
 - **Nov 1993**: Mosaic 1, GUI, images
 - **Dec 1994**: Netscape 1, cookies, multiple connections, `<center>` tag
 - **March 1996**: Netscape 2, frames, JavaScript, beginning of DOM, SSL, Java, plugins
 - **August 1996**: Netscape 3 mouseovers; IE 3: CSS
 - **1997-1999**: browser bars, DHTML in both IE 4 and Netscape 4
 - **March 1999**: XMLHttpRequest
 - **2000**: Outlook Web Access using XMLHttpRequest
 - **Recent years**: AJAX, client-side mashups, Web 2.0

- Static documents, one site at a time → data content from different sites (images, frames) → programmability with DOM → dynamic HTML → AJAX & client-side mashups

Single-principal → Multi-principal platform (principal = site/domain)
Browser Abstractions Lag Behind

• Same origin policy (SOP)
 – A document or script loaded from one "origin" cannot get or set properties of a document from a different "origin".

• Binary trust model
 – Full trust: <script> third party code inclusion as library
 – No trust: <iframe> third party code isolation

• For other trust levels:
 – Sacrifice security for functionality:
 • JavaScript for data transport → “JavaScript Hijacking” [Fortify]
 • Live.com, iGoogle: fully isolated gadget or inline gadget:
 – “Inline modules can... give its author access to information including your Google cookies... Click OK if you trust this module's author”
 – Sacrifice functionality for security:
 • Social network web sites (myspace.com) deny scripts in user profiles to mitigate cross site scripting

© 2007 Microsoft Corporation
MashupOS

- A browser-based multi-principal operating system

- Initial focus: abstractions for protection and communications
 - Prevent one principal from compromising the confidentiality and integrity of other principals
 - Communications allow principals to communicate in a controlled manner

- Initial paper at HotOS 2007

- Full paper to come
BrowserShield for Sanitizing Dynamic Content
Motivation

• Web browser is a key interface between users and their electronic services and has rich functionalities and extensions.
• Web browser has also become a popular vector of attack: in 2005
 – IE: 8 patches, 19 flaws
 – Firefox: 6 bulletins, 59 flaws
• Examples: tag attribute buffer overrun, flawed activeX controls, etc..
State-of-the-Art Protection Mechanisms: Patching

- Delayed deployment
 - User-driven
 - Hard to roll back
 - Administrator testing before patch application

- Dangerous time window between patch release and patch application
 - Attackers reverse-engineer patches to launch attacks
 - 90+\% attacks exploiting known vulnerability

[Arbaugh et al. 00]
State-of-the-Art Protection Mechanisms: Shielding

- Address the patch deployment problem
 - Patch the network input to the application rather than the application code itself
- Shield is a firewall that filters application level protocol traffic according to vulnerability signatures
- Vulnerability signature: vulnerability protocol state machine + reaction to malicious message format
- Easy deployment: automatic, easy removal
 - Enjoy same deployment model as AV
Can Shield Filter Browser Vulns?

- Yes for static pages: HTML treated as another protocol layer above HTTP
- No for dynamic HTML:
 - Scripts in HTML can generate attacks at run time on the browser, evading detection
 - Does a script contain the logic for exploiting a vulnerability? An instance of the halting problem
BrowserShield Approach

- **Key insight:** just like attackers who generate run-time attacks, we can also generate run-time protection.
- **Our Approach:**
 - Intercept HTML before being rendered by IE
 - Rewrite HTML and scripts to safe equivalents for browser to render
 - The safe equivalents contain logic that applies run-time checks and protection recursively to dynamically generated web content
BrowserShield Overview

- Injector injects the rewriting logic; actual rewriting is offloaded to and executes on client browser
- Injector can be a firewall, browser extension, web publisher

© 2007 Microsoft Corporation
Strider Monkeys
Strider Monkeys

- Basic idea: use monkey programs to mimic humans browsing the web and to detect and block “bad” websites before they get a chance to “hurt” actual web users

- **Strider HoneyMonkey** (http://research.microsoft.com/HoneyMonkey)
 - Use monkey programs running on unpatched virtual machines to scan the web and identify malicious websites that are exploiting (known or zero-day) browser vulnerabilities to install malware

- **Strider Typo-Patrol** (http://research.microsoft.com/URLTracer)
 - Use monkey programs to scan the “typo-neighborhoods” of popular websites to detect large-scale domain typo-squatters

- **Strider Search Ranger** (http://research.microsoft.com/SearchRanger)
 - Use monkey programs to scan search results of spammer-targeted keywords and perform traffic redirection analysis to identify large-scale search spammers (or called web spammers)